ALGEBRAIC INDEPENENCE OF CERTAIN FORMAL POWER SERIES (II)
نویسندگان: ثبت نشده
چکیده مقاله:
We shall extend the results of [5] and prove that if f = Z o a x ? Z [[X]] is algebraic over Q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over Q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over Q (x) if and only if f , f ,.., f are algebraically independent over Q (x)
منابع مشابه
algebraic indepenence of certain formal power series (ii)
we shall extend the results of [5] and prove that if f = z o a x ? z [[x]] is algebraic over q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over q (x) if and only if f , f ,.., f are algebraically independent over q (x)
متن کاملALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)
We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.
متن کاملalgebraic independence of certain formal power series (i)
we give a proof of the generalisation of mendes-france and van der poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of carlitz, we shall introduce a class of algebraically independent series.
متن کاملHYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملFormal Power Series Solutions of Algebraic Ordinary Differential Equations
In this paper, we consider nonlinear algebraic ordinary differential equations (AODEs) and study their formal power series solutions. Our method is inherited from Lemma 2.2 in [J. Denef and L. Lipshitz, Power series solutions of algebraic differential equations, Mathematische Annalen, 267(1984), 213-238] for expressing high order derivatives of a differential polynomial via their lower order on...
متن کاملWeighted Logics for Nested Words and Algebraic Formal Power Series
Nested words, a model for recursive programs proposed by Alur and Madhusudan, have recently gained much interest. In this paper we introduce quantitative extensions and study nested word series which assign to nested words elements of a semiring. We show that regular nested word series coincide with series definable in weighted logics as introduced by Droste and Gastin. For this we establish a ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 3 شماره 2
صفحات -
تاریخ انتشار 1992-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023